Abstract
Fractal geometry is increasingly being used to model complex naturally occurring phenomena. There are two types of fractals in nature-geometric fractals and stochastic fractals. The pulmonary branching structure is a geometric fractal and the intensity of its grey scale image is a stochastic fractal. In this paper, we attempt to quantify the texture of CT lung images using properties of both types of fractals. A simple algorithm for detection of abnormality in human lungs, based on 2D and 3D fractal dimensions, is presented. This method involves calculating the local fractal dimensions, based on intensities, in the 2D slice to aid enhancement. Following this, grey level thresholding is performed and a global fractal dimension, based on structure, for the entire data is estimated in 2D and 3D. High resolution CT images of normal and abnormal lungs were analyzed. Preliminary results showed that classification of normal and abnormal images could be obtained based on the differences between their global fractal dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.