Abstract

AbstractFractal properties of deep ocean current speed time series, measured at a single-point mooring on the Madeira Abyssal Plain at 1000- and 3000-m depth, are explored over the range between one week and 5 years, by using the detrended fluctuation analysis and multifractal detrended fluctuation analysis methodologies. The detrended fluctuation analysis reveals the existence of two subranges with different scaling behaviors. Long-range temporal correlations following a power law are found in the time-scale range between approximately 50 days and 5 years, while a Brownian motion–type behavior is observed for shorter time scales. The multifractal analysis approach underlines a multifractal structure whose intensity decreases with depth. The analysis of the shuffled and surrogate versions of the original time series shows that multifractality is mainly due to long-range correlations, although there is a weak nonlinear contribution at 1000-m depth, which is confirmed by the detrended fluctuation analysis of volatility time series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call