Abstract
Candida albicans is responsible for the majority of nosocomial infections affecting immunocompromised patients. Systemic antifungals may promote microbial resistance, which has led to the search for alternative treatments, such as photothermal therapy (PTT). PTT assumes that the interaction of electromagnetic radiation with a photothermal agent generates heat that can lead to the destruction of tumor cells and the death of microorganisms. Carbon nanotubes (CNTs) have the potential for applications in biomedical systems, including acting as controlled deliverers of drugs, biosensors and scaffolds for tissue engineering and regenerative medicine. Furthermore, the absorption of radiation by CNTs in the infrared region induces an increase in temperature, which makes CNTs candidates for photothermal agents. In this work, the photothermal inactivation of C. albicans was evaluated by multiple wall CNTs associated with laser radiation in the near-infrared region. The mechanisms that are involved in inactivation were evaluated through cell susceptibility studies and an analysis of microscopic images that are associated with mathematical models and fractal concepts. The results indicate that direct contact between the cells and CNTs without irradiation does not lead to cell death, whereas the laser-mediated process is effective in inactivation. The application of the laws of scale and fractal concepts indicate that in the control groups, there are two distinct regimes that are delimited by the mean diameter of the microorganisms, as described by the Eden model and by the quasi-Euclidean surface. For the irradiated groups, the surfaces present only one regime described by Kardar-Parisi-Zhang, KPZ. The analysis of the fractality of the system by mathematical models can help in the identification of new strategies for the inactivation of microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.