Abstract

Model quantization helps to reduce model size and latency of deep neural networks. Mixed precision quantization is favorable with customized hardwares supporting arithmetic operations at multiple bit-widths to achieve maximum efficiency. We propose a novel learning-based algorithm to derive mixed precision models end-to-end under target computation constraints and model sizes. During the optimization, the bit-width of each layer / kernel in the model is at a fractional status of two consecutive bit-widths which can be adjusted gradually. With a differentiable regularization term, the resource constraints can be met during the quantization-aware training which results in an optimized mixed precision model. Our final models achieve comparable or better performance than previous quantization methods with mixed precision on MobilenetV1/V2, ResNet18 under different resource constraints on ImageNet dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.