Abstract

Fra-1 (Fos-related antigen-1) is a member of the AP-1 (activator protein-1) family of transcription factors. We previously showed that Fra-1 is necessary for breast cancer cells to metastasize in vivo, and that a classifier comprising genes that are expressed in a Fra-1-dependent fashion can predict breast cancer outcome. Here, we show that Fra-1 plays an important role also in colon cancer progression. Whereas Fra-1 depletion does not affect 2D proliferation of human colon cancer cells, it impairs growth in soft agar and in suspension. Consistently, subcutaneous tumors formed by Fra-1-depleted colon cancer cells are three times smaller than those produced by control cells. Most remarkably, when injected intravenously, Fra-1 depletion causes a 200-fold reduction in tumor burden. Moreover, a Fra-1 classifier generated by comparing RNA profiles of parental and Fra-1-depleted colon cancer cells can predict the prognosis of colon cancer patients. Functional pathway analysis revealed Wnt as one of the central pathways in the classifier, suggesting a possible mechanism of Fra-1 function in colon cancer metastasis. Our results demonstrate that Fra-1 is an important determinant of the metastatic potential of human colon cancer cells, and that the Fra-1 classifier can be used as a prognostic predictor in colon cancer patients.

Highlights

  • Metastasis is the main reason for many solid tumors to be life-threatening

  • As we have previously shown that Fra-1 is largely dispensable for human breast cancer cell growth in vitro but crucial for their ability to metastasize in vivo [7], we decided to investigate whether Fra-1 has a similar role in human colon cancer

  • We demonstrate that Fra-1 is a critical biological determinant of colon cancer metastasis, as judged by two main observations

Read more

Summary

Introduction

The metastatic cascade involves several steps, ranging from dissemination from the primary tumor to growth at a secondary site. The acquisition of metastatic capability by tumor cells can be associated with Epithelial-Mesenchymal Transition (EMT). Upon EMT, tumor cells are able to invade through the basement membrane of the primary tissue and stroma, and to enter the blood circulation. They often become anoikis resistant, which allows them to survive in the absence of attachment. They associate with the endothelium and extravasate to a secondary tissue. It is crucial to predict metastatic potential of disease and to target metastasis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.