Abstract

This chapter shows that cone-monotone functions on Asplund spaces have points of Fréchet differentiability and that the appropriate version of the mean value estimates holds. It also proves that the corresponding point of Fréchet differentiability may be found outside any given σ‎-porous set. This new result considerably strengthens known Fréchet differentiability results for real-valued Lipschitz functions on such spaces. The avoidance of σ‎-porous sets is new even in the Lipschitz case. The chapter first discusses the use of variational principles to prove Fréchet differentiability before analyzing a one-dimensional mean value problem in relation to Lipschitz functions. It shows that results on existence of points of Fréchet differentiability may be generalized to derivatives other than the Fréchet derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.