Abstract
Linear recurrence equations with constant coefficients define the power series coefficients of rational functions. However, one usually prefers to have an explicit formula for the sequence of coefficients, provided that such a formula is "simple" enough. Simplicity is related to the compactness of the formula due to the presence of algebraic numbers: "the smaller, the simpler". This poster showcases the capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power series representations of their correctly guessed generating functions. We designed the algorithm for the more general context of univariate P -recursive sequences. Our implementations are available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.