Abstract

Rating prediction is crucial in recommender systems as it enables personalized recommendations based on different models and techniques, making it of significant theoretical importance and practical value. However, presenting these recommendations in the form of lists raises the challenge of improving the list's quality, making it a prominent research topic. This study focuses on enhancing the ranking quality of recommended items in user lists while ensuring interpretability. It introduces fuzzy membership functions to measure user attributes on a multi-dimensional item label vector and calculates user similarity based on these features for prediction and recommendation. Additionally, the user similarity network is modeled to extract community information, leading to the design of a set of corresponding recommendation algorithms. Experimental results on two commonly used datasets demonstrate the effectiveness of the proposed algorithm in enhancing list ranking quality, reducing prediction errors, and maintaining recommendation diversity and accurate user preference classification. This research highlights the potential of integrating heuristic methods with complex network theory and fuzzy techniques to enhance recommendation system performance with interpretability in mind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.