Abstract

In this paper, we propose and validate a tactile sensory feedback system for prosthetic applications based on an optical communication link. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for a large number and variety of tactile sensors. The low-power transmission is derived from the employed UWB-based optical modulation technique. A system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors, was implemented and experimentally tested. The system functionality was demonstrated by processing and transmitting data from the piezoelectric sensor at a 100 Mbps data rate through the optical link, measuring a communication energy consumption of 50 pJ/bit. The reported experimental results validate the functionality of the proposed sensory feedback system and demonstrate its real-time operation capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call