Abstract

Current transformer saturation affects measurement accuracy and, consequently, protection reliability. One important concern in the case of overcurrent protections is the discrimination between faults and inrush current in power transformers. This paper presents an FPGA-based smart sensor to detect current transformer saturation, especially during inrush current conditions. Several methods have been proposed in the literature, but some are unsuitable for inrush currents due to their particular waveform. The proposed algorithm implemented on the smart sensor uses two time-domain features of the measured secondary current: the second-order difference function and the third-order statistic central moment. The proposed smart sensor presents high effectiveness and immunity against noise with accurate results in different conditions: different residual flux, resistive burdens, sampling frequency, and noise levels. The points at which saturation starts are detected with an accuracy of approximately 100%. Regarding the end of saturation, the proposed method detects the right ending points with a maximum error of a sample. The smart sensor has been tested on experimental online and real-time conditions (including an anti-aliasing filter) with accurate results. Unlike most existing methods, the proposed smart sensor operates efficiently during inrush conditions. The smart sensor presents high-speed processing despite its simplicity and low computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.