Abstract

Modelling and simulation of stand-alone photovoltaic (SAPV) systems (PV module, battery, regulator, etc.) in real time is crucial for the control, the supervision, the diagnosis and for studying their performances. In this paper, an intelligent simulator for stand-alone PV system was developed. Firstly, a multilayer perceptron (MLP) has been used for modelling and simulating each component of the system, after that the optimal architecture for each component has been implemented and simulated by using the very high-speed description language (VHDL) and the ModelSim. Subsequently, the developed architectures for each component have been implemented under the Xilinx® Virtex-II Pro FPGA (XC2V1000) (field programmable gate array). The obtained results showed that good accuracy is found between predicted and experimental data (signal) in a specific location (south of Algeria). The designed intelligent components (PV-MLP generator, MLP-battery and MLP-regulator) of the SAPV system can be used with success for simulating the system in real time (under a specific climatic condition) by predicting the different output signals for each component constituting the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.