Abstract

In this paper an FPGA-based on-board control system for autonomous orientation of an aerial robot to assist in aerial manipulation tasks is introduced. The system is able to apply yaw control to aid an operator in precisely positioning a drone when it is nearby a bar-like object. This is achieved by applying parallel Hough transform combined with a novel image space separation method, enabling highly reliable results in various circumstances combined with high performance. The feasibility of this approach is shown by applying the system to a multi-rotor aerial robot equipped with an upward directed robotic hand on top of the airframe developed for high altitude manipulation tasks. In order to grasp a bar-like object, the object’s orientation is derived from the image data obtained by a monocular camera mounted on the robot. This data is then analyzed by the on-board FPGA system to control yaw angle of the aerial robot. Our experiments show that use of this control system achieves reliable yaw-orientation control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.