Abstract

A field-programmable gate array (FPGA)-based Elman neural network (ENN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principle of the LUSM are introduced. Because the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an ENN control system is designed to achieve precision position control. The network structure and online learning algorithm using delta adaptation law of the ENN are described in detail. Then, a piecewise continuous function is adopted to replace the sigmoid function in the hidden layer of the ENN to facilitate hardware implementation. In addition, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.