Abstract
Three-dimensional representations and maps are the key behind self-driving vehicles and many types of advanced autonomous robots. Localization and mapping algorithms can achieve much higher levels of accuracy with dense 3D point clouds. However, the cost of a multiple-channel three-dimensional lidar with a 360°field of view is at least ten times the cost of an equivalent single-channel two-dimensional lidar. Therefore, while 3D lidars have become an essential component of self-driving vehicles, their cost has limited their integration and penetration within smaller robots. We present an FPGA-based 3D lidar built with multiple inexpensive RPLidar A1 2D lidars, which are rotated via a servo motor and their signals combined with an FPGA board. A C++ package for the Robot Operating System (ROS) has been written, which publishes a 3D point cloud. The mapping of points from the two-dimensional lidar output to the three-dimensional point cloud is done at the FPGA level, as well as continuous calibration of the motor speed and lidar orientation based on a built-in landmark recognition. This inexpensive design opens a wider range of possibilities for lower-end and smaller autonomous robots, which can be able to produce three-dimensional world representations. We demonstrate the possibilities of our design by mapping different environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.