Abstract

We present a case for FPGA-accelerated edge processing for low-power Internet-of-Things (IoT) devices, using time series similarity search as a driving application. As the data collection capabilities of low-power IoT device increase, the primary constraint on their capacity is becoming the resource requirements of wirelessly transferring collected data to a central repository. This work presents a solution to this limitation by augmenting the IoT device with a inexpensive, power-efficient FPGA accelerator, which can perform fairly complex edge mining operations and drastically reduce the wireless data transfer requirements. This approach reduces the total power consumption of the device despite the added FPGA component, while also reducing the computation requirements at the central server. We use the Dynamic Time Warping (DTW) algorithm as an example workload. Using a low-cost Lattice iCE40 UltraPlus FPGA, we demonstrate that the FPGA-augmented mining algorithm can both support significantly higher data collection rate while improving the computation power efficiency of the entire deployment by an order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.