Abstract

Physical layer processing for 5G wireless is expected to operate at a very high-throughput with very low latency. Developing a channel coding system based on Hybrid Automatic Repeat reQuest (HARQ) for evolving requirements necessitates extensive experimentation involving undesirably long development cycles. We demonstrate the use of a High-level Synthesis (HLS) compiler in LabVIEW Communications to prototype a real world HARQ system using Low-Density Parity-Check (LDPC) codes, however, without the expertise of an Hardware Description Language (HDL) designer. This implementation consumed 54% of the resources on our FPGA and allowed us to measure error-rate performance of the system over large, realistic data sets using accelerated, in-hardware simulation with a system throughput that is 4× greater than the CPU-based implementation. Furthermore, use of the HLS methodology significantly reduced time to explore the HARQ system parameter space and optimize in terms of error-rate performance and resource utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.