Abstract

Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments. For this purpose, a neural network can be an alternative in off-line data processing. For processing the data in real time and reducing the off-line data storage required in a trigger event, we designed a customized neural network accelerator on a field programmable gate array platform to implement specific layers in a convolutional neural network. The latter is then used in the front-end electronics of the detector. With fully reconfigurable hardware, a tested neural network structure was used for accurate timing of shaped pulses common in front-end electronics. This design can handle up to four channels of pulse signals at once. The peak performance of each channel is 1.665 Giga operations per second at a working frequency of 25 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.