Abstract
Field programmable gate array (FPGA) implementation of a model predictive control with constant switching frequency (MPC-CSF) for a permanent magnet synchronous machine (PMSM) is proposed. The basic finite states MPC (FS-MPC) can be combined with a pulsewidth modulation (PWM) modulator because of an effective cost function optimization algorithm in which voltage vectors are dynamically selected and calculated through iteration based on the idea similar to dichotomy. Using model-based design (MBD), MPC-CSF is implemented on an FPGA with parallel and pipeline processing techniques in short execution time. Functionality simulation analysis presents that MPC-CSF is much robust to parameter variations. Experimental results illustrate that MPC-CSF has good dynamic performance for PMSM drives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.