Abstract

<span lang="EN-US">Spread spectrum (SS) communications have attracted interest because of their channel attenuation immunity and low intercept potential. Apart from some extra features such as basic transceiver structures, chaotic communication would be the analog alternative to digital SS systems. Differential chaos shift keying (DCSK) systems, non-periodic and random characteristics among chaos carriers as well as their interaction with soft data are designed based on low-density parity-check (LDPC) codes in this brief. Because of simple structure, and glorious ability to <span>correct errors. Using the Xilinx kintex7 FPGA development kit, we investigate the hardware performance and resource requirement tendencies of the DCSK</span> communication system based on LDPC decoding algorithms (Prob. Domain, Log Domain and Min-Sum) over AWGN channel. The results indicate that the proposed system model has substantial improvements in the performance of the bit error rate (BER) and the real-time process. The Min-Sum decoder has relatively fewer FPGA resources than the other decoders. The implemented system will achieve 10-4 BER efficiency with 5 dB associate E<sub>b</sub>/N<sub>o</sub> as a coding gain.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.