Abstract
This contribution presents the hardware implementation of a neural system, which is a variant of a Hopfield network, modified to perform parametric identification of dynamical systems, so that the resulting network possess time-varying weights. The implementation, which is accomplished on FPGA circuits, is carefully designed so that it is able to deal with these dynamic weights, as well as preserve the natural parallelism of neural networks, at a limited cost in terms of occupied area and processing time. The design achieves modularity and flexibility, due to the usage of parametric VHDL to describe the network. The functional simulation and the synthesis show the viability of the design, whose refinement will lead to the development of an embedded adaptive controller for autonomous systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.