Abstract

This paper presents the design of a nonlinear autoregressive moving average (NARMA) digital adaptive predistorter (DAPD) for power amplifier (PA) linearization consisting of a low-complex closed-loop architecture. Both the predistortion function and the adaptation algorithm are fully implemented in a field-programmable gate array (FPGA) device, without the need for using any additional coprocessor. The proposed predistortion architecture is capable to compensate for both the PA nonlinear distortion and memory effects. Moreover, this DAPD allows almost real-time adaptation without interrupting the normal transmission. The computational complexity introduced by this DAPD is studied in this paper. The proposed theoretical design is implemented in an FPGA, whereas the linearization performance of the DAPD is validated through simulated and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.