Abstract

The rheology of a fluid flowing in an industrial process pipe can be calculated by combining the pressure drop and the velocity profile that the fluid develops across the tube diameter. The profile is obtained noninvasively through an ultrasound Doppler investigation. Unfortunately, at present, no system capable of real-time velocity profile assessment is available for in-line industrial rheological measurements, and tests are operated by manually moving fluid specimens to specialized laboratories. In this work, we present an embedded system capable of in-line and real-time measurement of velocity profile and pressure drop, which enables the automatic rheological characterization of non-Newtonian fluids in process pipes. The system includes all the electronics for the ultrasound front-end, as well as the digital devices for the real-time calculation of the velocity profile. The proposed system is highly programmable, low-noise, and specifically targeted for industrial use. It is shown capable of producing, for example, 512-point velocity profiles at 45 Hz rate. An application is presented where a sludge fluid, flowing at 600 L/min in a 48 mm diameter high-grade stainless steel pipe, is characterized in real-time with a ±5% accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.