Abstract

This paper presents a field-programmable gate array (FPGA) implementation of a digital circuit that measures in real time the output power of medium-frequency (25-50 kHz) induction-heated cooking appliances. The voltage and current are sensed using first-order sigma-delta (SigmaDelta) analog-to-digital converters. The power-measuring algorithm is very simple while maintaining good accuracy. The algorithm is developed using a hardware description language (VHDL). The digital circuit, the power converter, the signal conditioning circuits, and the SigmaDelta modulators are simulated all together using a mixed-signal (analog + digital) simulation tool. The algorithm error is obtained in simulation computing the average power using VHDL-Analog and Mixed-Signal Extension Language (VHDL-AMS), and the influence of different parameters is analyzed. Finally, the digital circuit is implemented in the FPGA, and the simulations are experimentally verified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.