Abstract

Efficient and real time segmentation of color images has a variety of importance in many fields of computer vision such as image compression, medical imaging, mapping and autonomous navigation. Being one of the most computationally expensive operation, it is usually done through software implementation using high-performance processors. In robotic systems, however, with the constrained platform dimensions and the need for portability, low power consumption and simultaneously the need for real time image segmentation, we envision hardware parallelism as the way forward to achieve higher acceleration. Field-programmable gate arrays (FPGAs) are among the best suited for this task as they provide high computing power in a small physical area. They exceed the computing speed of software based implementations by breaking the paradigm of sequential execution and accomplishing more per clock cycle operations by enabling hardware level parallelization at an architectural level. In this paper, we propose three novel architectures of a well known Efficient Graph based Image Segmentation algorithm. These proposed implementations optimizes time and power consumption when compared to software implementations. The hybrid design proposed, has notable furtherance of acceleration capabilities delivering atleast 2X speed gain over other implementations, which henceforth allows real time image segmentation that can be deployed on Mobile Robotic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.