Abstract

A factor graph (FG) can be considered as a unified model combining a Bayesian network (BN) and a Markov random field (MRF). The inference mechanism of a FG can be used to perform reasoning under incompleteness and uncertainty, which is a challenging task in many intelligent systems and robotics. Unfortunately, a complete inference mechanism requires intense computations that introduces a long delay for the reasoning process to complete. Furthermore, in an energy-constrained system such as a mobile robot, it is required to have a very efficient inference process. In this paper, we present an embedded FG inference engine that employs a neural-inspired discretization mechanism. The engine runs on a system-on-chip (SoC) and is accelerated by its FPGA. We optimized our design to balance the trade-off between speed and hardware resource utilization. In our fully-optimized design, it can accelerate the inference process eight times faster than the normal execution, which is twice the speed-up gain achieved by a parallelized FG running on a PC. The experiments demonstrate that our design can be extended into an efficient reconfigurable computing machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.