Abstract

The integration of photovoltaic (PV) energy sources into DC grid has gained considerable attention because of its enhanced conversion efficiency with reduced number of power conversion stages. During the integration process, a local control unit is normally included with every power conversion stage of the PV source to accomplish the process of maximum power point tracking. A centralized monitoring and supervisory control unit is required for monitoring, power management, and protection of the entire system. Therefore, we propose a field-programmable gate array (FPGA) based centralized control unit that integrates all local controllers with the centralized monitoring unit. The main focus of this study is on the process of integrating many local control units into a single central unit. In this paper, we present design and optimization procedures for the hardware implementation of FPGA architecture. Furthermore, we propose a transient analysis and control design methodology with consideration of the nonlinear characteristics of the PV source. Hardware experiment results verify the efficiency of the central control unit and controller design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call