Abstract

Applications based on Discrete Fourier Transforms (DFT) are extensively used in various areas of signal and digital image processing. Of particular interest is the two-dimensional (2D) DFT which is more computation- and bandwidth-intensive than the one-dimensional (1D) DFT. Traditionally, a 2D DFT is computed using Row-Column (RC) decomposition, where 1D DFTs are computed along the rows followed by 1D DFTs along the columns. Both application specific and reconfigurable hardware have been used for high-performance implementations of 2D DFT. However, architectures based on RC decomposition are not efficient for large input size data due to memory bandwidth constraints. In this paper, we propose an efficient architecture to implement the 2D DFT for large-sized input data based on a novel 2D decomposition algorithm. This architecture achieves very high throughput by exploiting the inherent parallelism due to the algorithm decomposition and by utilizing the row-wise burst access pattern of the external memory. A high throughput memory interface has been designed to enable maximum utilization of the memory bandwidth. In addition, an automatic system generator is provided for mapping this architecture onto a reconfigurable platform of Xilinx Virtex5 devices. For a 2K×2K input size, the proposed architecture is 1.96x times faster than RC decomposition based implementation under the same memory constraints, and also outperforms other existing implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.