Abstract
In the integrated circuit (IC) packaging, the surface defect detection of flexible printed circuit boards (FPCBs) is important to control the quality of IC. Although various computer vision (CV)-based object detection frameworks have been widely used in industrial surface defect detection scenarios, FPCB surface defect detection is still challenging due to non-salient defects and the similarities between diverse defects on FPCBs. To solve this problem, a decoupled two-stage object detection framework based on convolutional neural networks (CNNs) is proposed, wherein the localization task and the classification task are decoupled through two specific modules. Specifically, to effectively locate non-salient defects, a multi-hierarchical aggregation (MHA) block is proposed as a location feature (LF) enhancement module in the defect localization task. Meanwhile, to accurately classify similar defects, a locally non-local (LNL) block is presented as a SEF enhancement module in the defect classification task. What is more, an FPCB surface defect detection dataset (FPCB-DET) is built with corresponding defect category and defect location annotations. Evaluated on the FPCB-DET, the proposed framework achieves state-of-the-art (SOTA) accuracy to 94.15% mean average precision (mAP) compared with the existing surface defect detection networks. Soon, source code and dataset will be available at https://github.com/SCUTyzy/decoupled-two-stage-framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.