Abstract

The structural and the electronic properties of the ternary SrxCa1-xS, BaxCa1-xS and BaxSr1-xS alloys have been calculated using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both local density approximation (LDA) and generalized gradient approximation (GGA). The calculated equilibrium lattice constants and bulk modulus are compared with previous results. The concentration dependence of the electronic band structure and the direct and indirect band gaps are investigated. Using the approach of Zunger and co-workers, the microscopic origins of the band gap bowing are investigated also. A reason is found from the comparison of our results with other theoretical calculations.

Highlights

  • The II-VI compound semiconductors (AY: A = Ca, Sr, Ba; Y = S) have recently received considerable interest from the blue to the near-ultraviolet spectral region of both experimental and theoretical points of view [1]

  • The structural and the electronic properties of the ternary SrxCa1-xS, BaxCa1-xS and BaxSr1-xS alloys have been calculated using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both local density approximation (LDA) and generalized gradient approximation (GGA)

  • The goal of this work is to calculate the structural and the electronic properties by using the full-potential linear muffin-tin-orbital (FP-LMTO) method within the local density approximation (LDA), and two newly developed refinements, named the generalized gradient approximation (GGA) of Perdew et al The physical origins of gap bowing are calculated following the approach of Zunger et al [12]

Read more

Summary

Introduction

The II-VI compound semiconductors (AY: A = Ca, Sr, Ba; Y = S) have recently received considerable interest from the blue to the near-ultraviolet spectral region of both experimental and theoretical points of view [1]. This was due to their potential technological applications, in light-emitting diodes (LEDs) and laser diodes (LDs) [2]. The alkaline earth chalcogenides form a closed-shell ionic system crystallized in the rocksalt type structuretype (B1) at ambient conditions They are technologically important materials, with applications in the area of luminescent devices, radiation dosimetry, fast high-resolution optically stimulated luminescence imaging, and infrared sensitive devices [6,7,8]. They are used as which can be used as materials for fabricating thin film heterojunction photo-

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.