Abstract

Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.