Abstract

The calcineurin B-like (CBL) protein and the CBL-interacting protein kinase (CIPK) signaling pathway play important roles in plant abiotic stress tolerance. To investigate the molecular mechanism of salt stress tolerance of foxtail millet, SiCBL4 and SiCIPK24 were identified and functionally characterized. Both SiCBL4 and SiCIPK24 were induced by salt, abscisic acid (ABA), methyl viologen (MV), and heat shock stress in foxtail millet seedlings. Yeast two-hybrid and bimolecular fluorescence complementation assay showed that SiCBL4 interacted with SiCIPK24. The mutation of the N-myristoylation site of SiCBL4 changed the sub-cellular localization of SiCBL4 and directed the SiCBL4-SiCIPK24 protein complex from plasma membrane to cytoplasm, and disrupted its function in plant salt stress tolerance. Overexpression of SiCBL4 or SiCIPK24 in Arabidopsis sos3-1 or sos2-1 mutant plants rescued the mutant salt hypersensitivity phenotype. In addition, overexpression of SiCIPK24 also enhanced the salt stress tolerance of Arabidopsis wild-type plants. This work helps to understand the structure and function of the foxtail millet CBL and CIPK genes and confirmed that the foxtail millet CBL-CIPK pathway can be manipulated to enhance the plant salt stress tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call