Abstract
AbstractATR signaling is essential in sensing and responding to the replication stress; as such, any defects can impair cellular function and survival. ATR itself is activated via tightly regulated mechanisms. Here, we identify FOXP1, a forkhead-box-containing transcription factor, as a regulator coordinating ATR activation. We show that, unlike its role as a transcription factor, FOXP1 functions as a scaffold and directly binds to RPA–ssDNA and ATR–ATRIP complexes, facilitating the recruitment and activation of ATR. This process is regulated by FOXP1 O-GlcNAcylation, which represses its interaction with ATR, while CHK1-mediated phosphorylation of FOXP1 inhibits its O-GlcNAcylation upon replication stress. Supporting the physiological relevance of this loop, we find pathogenic FOXP1 mutants identified in various tumor tissues with compromised ATR activation and stalled replication fork stability. We thus conclude that FOXP1 may serve as a potential chemotherapeutic target in related tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.