Abstract

BackgroundSegmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively. The gene forkhead box P1 (FOXP1) maps to chromosome 3p14.1, a tumor suppressor locus deleted in many human cancers including neuroblastoma. FoxP1 belongs to a family of winged-helix transcription factors that are involved in processes of cellular proliferation, differentiation and neoplastic transformation.MethodsMicroarray expression profiles of 476 neuroblastoma specimens were generated and genes differentially expressed between favorable and unfavorable neuroblastoma were identified. FOXP1 expression was correlated to clinical markers and patient outcome. To determine whether hypermethylation is involved in silencing of FOXP1, methylation analysis of the 5′ region of FOXP1 in 47 neuroblastomas was performed. Furthermore, FOXP1 was re-expressed in three neuroblastoma cell lines to study the effect of FOXP1 on growth characteristics of neuroblastoma cells.ResultsLow expression of FOXP1 is associated with markers of unfavorable prognosis like stage 4, age >18 months and MYCN amplification and unfavorable gene expression-based classification (P < 0.001 each). Moreover, FOXP1 expression predicts patient outcome accurately and independently from well-established prognostic markers. Array-based CGH analysis of 159 neuroblastomas revealed that heterozygous loss of the FOXP1 locus was a rare event (n = 4), but if present, was associated with low FOXP1 expression. By contrast, DNA methylation analysis in 47 neuroblastomas indicated that hypermethylation is not regularly involved in FOXP1 gene silencing. Re-expression of FoxP1 significantly impaired cell proliferation, viability and colony formation in soft agar. Furthermore, induction of FOXP1 expression led to cell cycle arrest and apoptotic cell death of neuroblastoma cells.ConclusionsOur results suggest that down-regulation of FOXP1 expression is a common event in high-risk neuroblastoma pathogenesis and may contribute to tumor progression and unfavorable patient outcome.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-840) contains supplementary material, which is available to authorized users.

Highlights

  • Segmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively

  • forkhead box P1 (FOXP1) may act as an oncogene as it is highly expressed in hepatocellular carcinoma and certain B cell malignancies, in which it is frequently targeted by activating chromosome translocations placing it under the transcriptional control of the IGH enhancers [15,16]

  • Low FOXP1 transcript levels are correlated with markers of poor outcome in neuroblastoma To investigate whether FOXP1 expression is associated with prognostic markers of poor outcome in neuroblastoma, its expression levels were evaluated in a cohort of 476 neuroblastoma microarray profiles reflecting the whole spectrum of the disease [17]

Read more

Summary

Introduction

Segmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively. Members of the Fox subfamily P share several characteristics that are atypical among Fox proteins: their Forkhead domain is located near the carboxy-terminal region and they contain leucine zipper motifs that promote FoxP homo- and heterodimerization and highly selective, tissue- or cell-type specific activity [6]. These factors are widely but not ubiquitously expressed in human tissues and have been implicated in both embryonic development and adult tissue homeostasis by regulating cell growth, proliferation, differentiation, longevity and transformation [7,8]. FOXP1 may act as an oncogene as it is highly expressed in hepatocellular carcinoma and certain B cell malignancies, in which it is frequently targeted by activating chromosome translocations placing it under the transcriptional control of the IGH enhancers [15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call