Abstract
Autism and speech and language deficits are predominantly found in boys, however the causative mechanisms for this sex bias are unknown. Human FOXP1 is associated with autism, intellectual disability and speech and language deficits. Its closely related family member FOXP2 is involved in speech and language disorder and Foxp2 deficient mice have demonstrated an absence of ultrasonic vocalizations (USVs). Since Foxp1 and Foxp2 form heterodimers for transcriptional regulation, we investigated USV in neonatal brain-specific Foxp1 KO mice. Foxp1 KO pups had strongly reduced USV and lacked the sex-specific call rate from WT pups, indicating that Foxp1 is essential for normal USV. As expression differences of Foxp1 or Foxp2 could explain the sex-dimorphic vocalization in WT animals, we quantified both proteins in the striatum and cortex at P7.5 and detected a sex-specific expression of Foxp2 in the striatum. We further analyzed Foxp1 and Foxp2 expression in the striatum and cortex of CD1 mice at different embryonic and postnatal stages and observed sex differences in both genes at E17.5 and P7.5. Sex hormones, especially androgens are known to play a crucial role in the sexual differentiation of vocalizations in many vertebrates. We show that Foxp1 and the androgen receptor are co-expressed in striatal medium spiny neurons and that brain-specific androgen receptor KO (ArNesCre) mice exhibit reduced Foxp1 expression in the striatum at E17.5 and P7.5 and an increased Foxp2 level in the cortex at P7.5. Thus, androgens may contribute to sex-specific differences in Foxp1 and Foxp2 expression and USV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.