Abstract
To determine the underlying mechanism of Foxp1/2/4-mediated transcriptional repression, a yeast two-hybrid screen was performed that identified p66beta, a transcriptional repressor and component of the NuRD chromatin-remodeling complex. We show that direct interactions between Foxp1/4 and p66beta are mediated by the CR2 domain within p66beta and the zinc finger/leucine zipper repression domain found in Foxp1/2/4. These direct interactions are functionally relevant as overexpression of p66beta in combination with Foxp factors cooperatively represses Foxp target gene expression, whereas loss of p66 and Foxp factors results in de-repression of endogenous Foxp target genes in lung epithelial cells. Moreover, the NuRD components HDAC1/2 associate in a macromolecular complex with Foxp proteins, and loss of expression or inhibition of HDAC1/2 activity leads to de-repression of Foxp target gene expression. Importantly, we show in vivo that Foxp1 and HDAC2 act cooperatively to regulate expression of the cytoprotective cytokine interleukin-6, which results in increased resistance to hyperoxic lung injury in Foxp1/HDAC2 compound mutant animals. These data reveal an important interaction between the Foxp transcription factors and the NuRD chromatin-remodeling complex that modulates transcriptional repression critical for the lung epithelial injury response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Biological Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.