Abstract
In mammals, oocytes are packaged into compact structures–primordial follicles–which remain inert for prolonged intervals until individual follicles resume growth via a process known as primordial follicle activation. Here we show that the phosphoinositide 3-kinase (PI3K) signalling pathway controls primordial follicle activation through the forkhead transcription factor Foxo3. Within oocytes, Foxo3 is regulated by nucleocytoplasmic shuttling. Foxo3 is imported into the nucleus during primordial follicle assembly, and is exported upon activation. Oocyte-specific ablation of Pten resulted in PI3K-induced Akt activation, Foxo3 hyperphosphorylation, and Foxo3 nuclear export, thereby triggering primordial follicle activation, defining the steps by which the PI3K pathway and Foxo3 control this process. Inducible ablation of Pten and Foxo3 in adult oocytes using a new tool for genetic analysis of the germline, Vasa-Cre ERT2 , showed that this pathway functions throughout life. Thus, a principal physiologic role of the PI3K pathway is to control primordial follicle activation via Foxo3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.