Abstract

Forkhead box O1 (FoxO1), a key molecule in the regulation of cell growth, differentiation and metabolism, is an important transcription factor. However, the effect of FoxO1 on Alzheimer’s disease (AD) needs further investigation. In this study, we aimed to explore the function and mechanism of FoxO1 in amyloid-β (Aβ) production and tau phosphorylation in AD. First, compared with the age matched wild-type (WT) mice, we showed that FoxO1 protein levels were reduced in the cortices but nearly unchanged in the hippocampi of 6-month-old APPswe/PSEN1dE9 transgenic mice expressing Swedish APP and Presenilin1 delta exon 9 mutations (APP/PS1 mice). Then, we found that overexpression of FoxO1 significantly attenuated Aβ production through inhibiting the amyloidogenic processing of β-amyloid precursor protein (APP), mediated by the key enzymes BACE1 and PS1, in N2a/APPsw cells. Furthermore, in FoxO1-overexpressing HEK293/Tau cells, the decreased levels of tau phosphorylation at selective sites (S262 and T231) were accompanied by increasing the expression of p-GSK-3β (S9), and reducing p-ERK. In contrast, the total tau (Tau-5), non-phosphorylated tau (Tau-1), p-Tau (S404), CDK5 and PP2A levels remained unchanged. These findings indicate that FoxO1 is related to AD and suggest FoxO1 as a therapeutic target for AD that reduces the levels of both Aβ expression and tau phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.