Abstract

A prolonged period of T-cell recovery is the major challenge in hematopoietic stem cell transplantation (HSCT). Thymic epithelial cells (TECs) are the major component of the thymic microenvironment for T-cell generation. However, TECs undergo degeneration over time. FOXN1 plays a critical role in TEC development and is required to maintain adult TECs for thymopoiesis. To investigate the potential application of FOXN1, we have cloned and expressed recombinant FOXN1 protein (rFOXN1) that was fused with cell-penetrating peptides. We show here that the rFOXN1 protein can translocate from the cell surface into the cytoplasm and nucleus. Administration of rFOXN1 into both congenic and allogeneic HSCT recipient mice increased the number of TECs, resulting in enhanced thymopoiesis that led to an increased number of functional Tcells in the periphery. The increased number of TECs is due to the enhanced survival and proliferation of TECs. Our results suggest that rFOXN1 has the potential to be used in enhancing T-cell regeneration in patients following HSCT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.