Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Here, we provide evidence that the Forkhead Box (Fox) m1b (Foxm1b or Foxm1) transcription factor is essential for the development of HCC. Conditionally deleted Foxm1b mouse hepatocytes fail to proliferate and are highly resistant to developing HCC in response to a Diethylnitrosamine (DEN)/Phenobarbital (PB) liver tumor-induction protocol. The mechanism of resistance to HCC development is associated with nuclear accumulation of the cell cycle inhibitor p27(Kip1) protein and reduced expression of the Cdk1-activator Cdc25B phosphatase. We showed that the Foxm1b transcription factor is a novel inhibitory target of the p19(ARF) tumor suppressor. Furthermore, we demonstrated that conditional overexpression of Foxm1b protein in osteosarcoma U2OS cells greatly enhances anchorage-independent growth of cell colonies on soft agar. A p19(ARF) 26-44 peptide containing nine D-Arg to enhance cellular uptake of the peptide was sufficient to significantly reduce both Foxm1b transcriptional activity and Foxm1b-induced growth of U2OS cell colonies on soft agar. These results suggest that this (D-Arg)(9)-p19(ARF) 26-44 peptide is a potential therapeutic inhibitor of Foxm1b function during cellular transformation. Our studies demonstrate that the Foxm1b transcription factor is required for proliferative expansion during tumor progression and constitutes a potential new target for therapy of human HCC tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.