Abstract

Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.

Highlights

  • IntroductionThe standard-of-care treatment for GBM patients consists of surgical resection followed by radiation and chemotherapy

  • Glioblastoma (GBM) is the most common and lethal primary brain tumor

  • We found that primary GBM cells have high expression levels of various glioblastoma stem/or initiating cell (GSC) enrichment markers such as CD133, CD15, c-Met, and Sox2, and these tumor cells harbor the capacities of clonogenic growth and tumor propagation.[8, 9]

Read more

Summary

Introduction

The standard-of-care treatment for GBM patients consists of surgical resection followed by radiation and chemotherapy. Despite these maximal therapies, the median survival of GBM patients is still only 14.6 months.[1] Therapeutic benefit of irradiation and TMZ treatments is only transient, due in most part to the resistance mechanisms elicited by GBM. [2,3,4,5,6] On the other hand, glioblastoma stem/or initiating cell (GSC) model postulates cellular hierarchy with GSCs at the apex These two models are non-mutually exclusive and can bring more comprehensive perspective to our understanding of GBM biology and therapeutics

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call