Abstract
The definitive endoderm forms during gastrulation and is rapidly transformed into the gut tube which is divided along the anterior-posterior axis into the foregut, midgut, and hindgut. Lineage tracing and genetic analysis have examined the origin of the definitive endoderm during gastrulation and demonstrated that the majority of definitive endoderm arises at the anterior end of the primitive streak (APS). Foxh1 and Foxa2 have been shown to play a role in specification of the APS and definitive endoderm. However, prior studies have focused on the role of these factors in specification of foregut definitive endoderm, while their role in the specification of midgut and hindgut definitive endoderm is less understood. Furthermore, previous analyses of these mutants have utilized definitive endoderm markers that are restricted to the anterior endoderm, expressed in extraembryonic endoderm, or present in other germ layers. Here, we characterized the expression of several novel definitive and visceral endoderm markers in Foxh1 and Foxa2 null embryos. In accordance with previous studies, we observed a deficiency of foregut definitive endoderm resulting in incorporation of visceral endoderm into the foregut. Interestingly, this analysis revealed that formation of midgut and hindgut definitive endoderm is unaffected by loss of Foxh1 or Foxa2. This finding represents a significant insight into specification and regionalization of mouse definitive endoderm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.