Abstract

Several recent findings have revealed that targeting of cell cycle reentry and (or) progression may provide an opportunity for the therapeutic intervention of Alzheimer's disease (AD). FOXG1 has been shown to play important roles in pattern formation, cell proliferation, and cell specification. Thus far, the roles of FoxG1 and its involvement in AD are largely unknown. Our study aimed to explore the intervention effect of FOXG1 on AD pathology and its potential mechanism with a particular focus on cell cycle regulation. We investigated the association of Foxg1 gene variants with AD-like behavioral deficits, p21 expression, neuronal apoptosis, and amyloid-β (Aβ) aggregate formation; we further determined whether targeting FOXG1-regulated cell cycle has therapeutic potential in AD. Paralleling AD-like behavioral abnormalities, neuronal apoptosis, and Aβ deposits, a significant reduction in the expression of FOXG1 was observed in APP/PS1 mice at 6 months of age. Using the APP/PS1;Foxg1fl/fl-CreAAV mouse line, we found that FOXG1 potentially antagonized cell cycle reentry by negatively regulating the levels of p21-activated kinase (PAK3). By reducing p21cip1-mediated arrest at the G2 stage and regulating cyclin A1- and cyclin B-dependent progression patterns of the cell cycle, FOXG1 blocked neuronal apoptosis and Aβ deposition. These results indicate that FOXG1 contributes to the regulation of the neuronal cell cycle, thereby affecting brain abnormalities in AD. An elevation of the FOXG1 level, either pharmacologically or through other means, could present a therapeutic strategy for AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call