Abstract

BackgroundThe most life-threatening step during malignant tumor progression is reached when cancer cells leave the primary tumor mass and seed metastasis in distant organs. To infiltrate the surrounding tissue and disseminate throughout the body, single motile tumor cells leave the tumor mass by breaking down cell-cell contacts in a process called epithelial to mesenchymal transition (EMT). An EMT is a complex molecular and cellular program enabling epithelial cells to abandon their differentiated phenotype, including cell-cell adhesion and cell polarity, and to acquire mesenchymal features and invasive properties.MethodsWe employed gene expression profiling and functional experiments to study transcriptional control of transforming growth factor (TGF)β-induced EMT in normal murine mammary gland epithelial (NMuMG) cells.ResultsWe identified that expression of the transcription factor forkhead box protein F2 (Foxf2) is upregulated during the EMT process. Although it is not required to gain mesenchymal markers, Foxf2 is essential for the disruption of cell junctions and the downregulation of epithelial markers in NMuMG cells treated with TGFβ. Foxf2 is critical for the downregulation of E-cadherin by promoting the expression of the transcriptional repressors of E-cadherin, Zeb1 and Zeb2, while repressing expression of the epithelial maintenance factor Id2 and miRNA 200 family members. Moreover, Foxf2 is required for TGFβ-mediated apoptosis during EMT by the transcriptional activation of the proapoptotic BH3-only protein Noxa and by the negative regulation of epidermal growth factor receptor (EGFR)-mediated survival signaling through direct repression of its ligands betacellulin and amphiregulin. The dual function of Foxf2 during EMT is underscored by the finding that high Foxf2 expression correlates with good prognosis in patients with early noninvasive stages of breast cancer, but with poor prognosis in advanced breast cancer.ConclusionsOur data identify the transcription factor Foxf2 as one of the important regulators of EMT, displaying a dual function in promoting tumor cell apoptosis as well as tumor cell migration.

Highlights

  • The most life-threatening step during malignant tumor progression is reached when cancer cells leave the primary tumor mass and seed metastasis in distant organs

  • epithelial to mesenchymal transition (EMT) has been implicated in several physiological as well as pathological processes. While it is a critical mechanism for embryonic development, EMT is re-engaged in adults during wound healing, tissue regeneration, organ fibrosis, and cancer progression and metastasis [2]

  • In contradiction to these findings are the observations that distant metastases frequently exhibit an epithelial phenotype highly similar to the primary tumor [9, 10]. Explaining this observation, it has been shown that disseminated mesenchymal cancer cells undergo the reverse process (mesenchymal to epithelial transition (MET)) after metastatic spread and colonization and revert to a differentiated, epithelial cell state enabling them to establish in the distant location [11,12,13]

Read more

Summary

Introduction

The most life-threatening step during malignant tumor progression is reached when cancer cells leave the primary tumor mass and seed metastasis in distant organs. To infiltrate the surrounding tissue and disseminate throughout the body, single motile tumor cells leave the tumor mass by breaking down cell-cell contacts in a process called epithelial to mesenchymal transition (EMT). An EMT is a complex molecular and cellular program enabling epithelial cells to abandon their differentiated phenotype, including cell-cell adhesion and cell polarity, and to acquire mesenchymal features and invasive properties

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call