Abstract

The molecular mechanisms orchestrating early mesoderm specification are still poorly understood. In particular, how alternate cell fate decisions are regulated in nascent mesoderm remains mostly unknown. In the present study, we investigated both in vitro in differentiating embryonic stem cells, and in vivo in gastrulating embryos, the lineage specification of early mesodermal precursors expressing or not the Forkhead transcription factor FOXF1. Our data revealed that FOXF1-expressing mesoderm is derived from FLK1(+) progenitors and that in vitro this transcription factor is expressed in smooth muscle and transiently in endothelial lineages, but not in hematopoietic cells. In gastrulating embryos, FOXF1 marks most extra-embryonic mesoderm derivatives including the chorion, the allantois, the amnion and a subset of endothelial cells. Similarly to the in vitro situation, FOXF1 expression is excluded from the blood islands and blood cells. Further analysis revealed an inverse correlation between hematopoietic potential and FOXF1 expression in vivo with increased commitment toward primitive erythropoiesis in Foxf1-deficient embryos, whereas FOXF1-enforced expression in vitro was shown to repress hematopoiesis. Altogether, our data establish that during gastrulation, FOXF1 marks all posterior primitive streak extra-embryonic mesoderm derivatives with the remarkable exception of the blood lineage. Our study further suggests that this transcription factor is implicated in actively restraining the specification of mesodermal progenitors to hematopoiesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call