Abstract
Metastatic melanoma is an aggressive skin cancer and associated with a poor prognosis. In clinical terms, targeted therapy is one of the most important treatments for patients with BRAFV600E -mutated advanced melanoma. However, the development of resistance to this treatment compromises its therapeutic success. We previously demonstrated that forkhead box D1 (FOXD1) regulates melanoma migration and invasion. Here, we found that FOXD1 was highly expressed in melanoma cells and was associated with a poor survival of patients with metastatic melanoma. Upregulation of FOXD1 expression enhanced melanoma cells' resistance to vemurafenib (BRAF inhibitor [BRAFi]) or vemurafenib and cobimetinib (MEK inhibitor) combination treatment whereas loss of FOXD1 increased the sensitivity to treatment. By comparing gene expression levels between FOXD1 knockdown (KD) and overexpressing (OE) cells, we identified the connective tissue growth factor (CTGF) as a downstream factor of FOXD1. Chromatin immunoprecipitation and luciferase assay demonstrated the direct binding of FOXD1 to the CTGF promoter. Similar to FOXD1, knockdown of CTGF increased the sensitivity of BRAFi-resistant cells to vemurafenib. FOXD1 KD cells treated with recombinant CTGF protein were less sensitive towards vemurafenib compared to untreated FOXD1 KD cells. Based on these findings, we conclude that FOXD1 might be a promising new diagnostic marker and a therapeutic target for the treatment of targeted therapy resistant melanoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.