Abstract
The Wnt/β-catenin pathway is a critical regulator of development and stem cell maintenance. Mounting evidence suggests that the outcome of Wnt signaling is determined by the collaborative action of multiple transcription factors, including members of the highly conserved forkhead box (FOX) protein family. However, the contribution of FOX transcription factors to Wnt signaling has not been investigated in a systematic manner. Here, we performed complementary screens of all 44 human FOX proteins to identify new Wnt pathway regulators. By combining β-catenin reporter assays with Wnt pathway-focused qPCR arrays and proximity proteomics of selected candidates, we determine that most FOX proteins are involved in the regulation of Wnt pathway activity. As proof-of-principle, we additionally characterize class D and I FOX transcription factors as physiologically relevant regulators of Wnt/β-catenin signaling. We conclude that FOX proteins are common regulators of Wnt/β-catenin-dependent gene transcription that may control Wnt pathway activity in a tissue-specific manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.