Abstract
Choroideremia is an X-linked inherited retinal degeneration involving the choriocapillaris, retinal pigment epithelium, and photoreceptors. Adaptive optics scanning light ophthalmoscopy allows visualization of retinal structure at the level of individual cells and is well poised to provide insight into the pathophysiologic mechanisms underpinning the retinal degeneration in choroideremia. Foveal adaptive optics scanning light ophthalmoscopy images of 102 eyes of 54 individuals with choroideremia were analyzed. Measures were compared with those from standard clinical imaging. Visual acuity was also measured and compared with quantitative foveal metrics. The 3 distinct phenotypes observed were: relatively normal (5 eyes, 4 individuals), spiderweb (9 eyes, 7 individuals), and salt and pepper (87 eyes, 47 individuals). Peak cone density (86 eyes of 51 individuals) was significantly lower in choroideremia than in healthy retinas (P < 0.0001, range: 29,382-157,717 cones/mm2). Peak cone density was significantly related to extent of retained ellipsoid zone on en face optical coherence tomography (r2 = 0.47, P = 0.0009) and inversely related to visual acuity (r2 = 0.20, P = 0.001). Distinct phenotypes can be observed on adaptive optics scanning light ophthalmoscopy imaging in choroideremia that cannot always be discerned on standard clinical imaging. Quantitative measures on adaptive optics imaging are related to the structural and functional severity of disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.