Abstract

Optical aberrations degrade the quality of images projected on the retina. The magnitude and orientation of the optical aberrations vary dramatically across individuals. Changes also occur with processes such as accommodation, and aging, and also with corneal and lens disease and surgery. Certain corrections such as multifocal lenses for presbyopia modify the aberration pattern to create simultaneous vision or extended depth-of-focus. Ocular aberrometers have made their way into the clinical practice. Besides, quantitative 3-D anterior segment imaging has allowed quantifying the morphology and alignment of the cornea and lens, linking ocular geometry and aberrations through custom eye models, and shedding light on the factors contributing to the optical degradation. However, perceived vision is affected by the eye’s aberrations in more ways than those purely predicted by optics, as the eye appears to be adapted to the magnitude and orientation of its own optical blur. Studies using Adaptive Optics, not only reveal the impact of manipulating the optical aberrations on vision, but also that the neural code for blur is driven by subject’s own aberrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call