Abstract

Localization is one of the main challenges to be addressed to develop autonomous vehicles able to perform complex maneuvers on roads opened to public traffic. Having an accurate dead-reckoning system is an essential step to reach this objective. This paper presents a dead-reckoning model for car-like vehicles that performs the data fusion of complementary and redundant sensors: wheel encoders, yaw rate gyro and steering wheel measurements. In order to get an accurate dead-reckoning system with a drift reduced to the minimum, the parameters have to be well calibrated and the procedure has to be simple and efficient. We present a method able to accurately calibrate the parameters without knowing the ground truth by using a Rauch-Tung-Striebel smoothing scheme which enables to obtain state estimates as close to the ground truth as possible. The smoothed estimates are then used within a optimization process to calibrate the model parameters. The method has been tested using data recorded from an experimental vehicle on public roads. The results show a significant diminution of the dead-reckoning drift compared to a commonly used calibration method. We evaluate finally the average distance a vehicle can navigate without exteroceptive sensors by using the proposed four-wheeled dead reckoning system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.