Abstract

This work compares the four-wave mixing (FWM) effect in epitaxial quantum dot (QD) lasers grown on silicon with quantum well (QW) lasers. A comparison of theory and experiment results shows that the measured FWM coefficient is in good agreement with theoretical predictions. The gain in signal power is higher for p-doped QD lasers than for undoped lasers, despite the same FWM coefficient. Owing to the near-zero linewidth enhancement factor, QD lasers exhibit FWM coefficients and conversion efficiency that are more than one order of magnitude higher than those of QW lasers. Thus, this leads to self-mode locking in QD lasers. These findings are useful for developing on-chip sources for photonic integrated circuits on silicon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.